
Procedia Computer Science 00 (2010) 1–9

Procedia Computer
Science

MML: towards a Multiscale Modeling Language

Jean-Luc Falconea, Bastien Choparda,∗, Alfons Hoekstrab

aUniversity of Geneva, Switzerland
bUniversity of Amsterdam, The Netherlands

Abstract

Recent multiscale applications require more and more often the coupling of many sub-
models, usually originating form different fields of science. Therefore, it is increasingly im-
portant to propose an effective description language that can help scientists with different back-
ground to co-develop a multiscale application. We propose a Multiscale Modeling Language
(MML) i.e. a description language aiming at specifying the architecture of a multiscale simula-
tion program. We will illustrate this approach by proposing a MML description of a computer
model for restenosis in a stented vessel.

Keywords: Multiscale modeling, description language, cellular automata, lattice Boltzmann
method, scale separation

1. Introduction

Most current multiscale applications are restricted to the coupling of two sub-systems, with a
micro-macro scale relation. However, there is a growing interest for complex problems requiring
the coupling of many sub-models, usually originating form different fields. Biomedical systems,
for instance, involve biological, chemical and physical processes evolving at different scales.
Following this approach, we recently developed a multiscale biomedical model for restenosis in
stented coronary arteries [1]. This model involves three different processes, all acting at their
own time scale: blood flow, smooth muscle cell proliferation and drug diffusion. Developing
such a model in a consortium of computer scientists, clinicians and biologists demonstrated the
importance of having a natural, intuitive and informative way to describe all the processes in
interaction.

Since a few years, scientists are studying more and more complex applications by integrating
together several new or existing single-science and single-scale models. Simultaneously, de-
velopment teams are often composed of different specialists working on separated geographical

∗Corresponding author
Email addresses: Jean-Luc.Falcone@unige.ch (Jean-Luc Falcone), Bastien.Chopard@unige.ch (Bastien

Chopard), A.G.Hoekstra@uva.nl (Alfons Hoekstra)

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 2

locations. Therefore, it is increasingly important to propose an effective description language
that can help to co-develop multiscale applications and collaborate efficiently to the architec-
ture of the solver. Also, with such a detailed “blueprint” of an application, other groups can
then easily extend the model by incrementally adding more features, without the need for a full
re-engineering.

In this paper we propose a Multiscale Modeling Language (MML) i.e. a human-friendly de-
scription language based on a graphical representation and/or an XML language. MML aims
at specifying the architecture of a multiscale simulation program. In particular, it allows the
scientists to specify the list of sub-models, their coupling, (including the relation between the
computational domains and scales), the type of coupling (coarse graining, scale splitting, am-
plification), input and output data, etc. We will illustrate this approach by proposing a MML
description of a restenosis multiscale application.

Here we will assume that the sub-models are only based on the cellular automata or lat-
tice Boltzmann methods and obey the general formalism proposed in the so-called CxA frame-
work [2, 3, 4]. Within this framework, all the objects are well defined, which allows us to be
quite specific. In addition, in that case, our MML description can be parsed automatically in
order to produce the skeleton of the application and, soon, to generate the full coupling code of
the multiscale simulation.

Although the current work is restricted to the CxA multiscale methodology, we are convinced
that it can be extended to other numerical frameworks. The goal of this paper is mainly to
stimulate the multiscale community to discuss the opportunity of MML and to open the door to
its specification.

2. Multiscale coupling with CxA

2.1. General concepts

We have recently proposed in [3, 4] a methodology for multiscale modeling based on the
coupling of any numbers of lattice Boltzmann [5] and cellular automata [6] sub-models, all
running at their specific time and spatial scales. We coined this framework CxA for “Complex
Automata”. Together with the theoretical concepts, we have also developed a coupling software
called MUSCLE [7, 8] which provides the glue to run simulations with these interacting sub-
models.

In our framework, A distinguishing feature of a multiscale application is the relation that
exists between the computational domains of each sub-model. We propose to consider two cases:
(1) single domains where both sub-models share the same spatial domain and (2) multi-domain
where the different sub-domains are adjacent or slightly overlapping.

However the main ideas of the CxA framework is that (1) cellular automata (CA) or Lattice
Boltzmann (LB) models can be described by a generic sequence of calls to well defined operators
(the so-called main loop) and that (2) the coupling between any two sub-models can be expressed
as a flow a data between a pair of these operators. Figure 1 illustrate these features on the
coupling of two models having for instance different temporal resolution and simulating the
growth of coral resulting from the nutrient brought by water currents.

In our generic description, the state of the CA or LB model over the computational domain
D is denoted by the symbol f . The operators are U for updating the computational domain, B
for imposing the boundary conditions, C for performing the so-called collision step and P for the
propagation of the f on the computational domain. Note that these operators are specific to the

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 3

while true
 D := D_init
 f := f_init
 while not SteadyState
 O_i[f]
 D := U(D)
 f := B(f)
 f := C(f)
 f := P(f)
 end
 O_f[f]
end

FLOW

D := D_init
f := f_init
while not EndCondition
 O_i[f]
 D := U(D)
 f := B(f)
 f := C(f)
 f := P(f)
end
O_f[f]

CORAL

Figure 1: Example of the generic loops and coupling template describing two coupled submodels.

LB and CA models and we refer the reader to [3, 4] for a full description. Finally the operator
Oi and O f denotes any observation that needs to be made on the system.

We have observed that not all coupling patterns are present in the rather large set of multiscale
applications we have considered in [4]. Only a few the pairs of operators are actually needed to
express the multiscale coupling between two sub-models. Among these possible coupling, some
reflect a single-domain relation and other a multi-domain relation. Also the nature of coupling
(coarse graining, scale splitting or amplification [4]) further specifies the pair of operators that
can be involved.

This rather small set of possible couplings suggests that a graphical language can be devised
to express the existing interaction between sub-models in our CxA framework. This is the very
purpose of this paper. But before proposing a set of rule to implement this MML language, we
need to specify a few more elements of the framework.

First, as discussed above, a coupling template corresponds to a flow of data between two
operators. However, the data may need some transformation between the two ends of the link.
For this reason a filter can be inserted along the data path to performed the required transforma-
tion, such as a change of scale, an interpolation or decimation. The filter is the component that
knows the scale requirements of both subsystems, whereas the sub-model are thought of as being
stand-alone and ready to be used in any different context.

Second, when more than two models are coupled a simple link is not enough and another
component called mapper is needed. A mapper acts as a central element which receives infor-
mation from all connected sub-models (through their operators O), combines this information
as required by the nature of the coupling, and sends it to the adequate operators of the recipient
sub-models.

2.2. ISR application

To illustrate better the MML language we shall define below for describing the implemen-
tation of a multiscale application, we first briefly present the in-stent restenosis (ISR) model [1]
that was developed in the COAST project as a demonstrator of the CxA framework.

The ISR application aims at developing a computer model of the proliferation of the smooth
muscle cells (SMC) following the deployment of a stent of a blood vessel [1]. This undesired
phenomena is called hyperplasia. SMC proliferation inside the lumen is the result of an initial
injury of the vessel wall by the stent. The blood flow affects hyperplasia through a coupling
between the shear stress and the SMC growth rate. In turn, hyperplasia changes the geometry

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 4

Figure 2: Schematic representation of the in-stent restenosis application on a scale separation map.

of the vessel, thus creating a feedback on the blood flow. A way to reduce SMC proliferation
is to use a drug eluted stent from which some chemical diffuses in the wall vessel to prevent
hyperplasia.

We have proposed [2] to express graphically the ISR application using the scale separation
map (SSM), as illustrated in Fig. 2. This diagram presents the three sub-models (BF for blood
flow, DD for drug diffusion and SMC for smooth muscle cell evolution) as a function of their
characteristic spatio-temporal scales. This drawing further shows the coupling between the sub-
models. This representation turned out to be very useful when discussing with biologists or
clinicians since it helped people to extract the important ingredients of a multiscale problem and
to identify the potential for simulation speedup offered by the separation of scales.

The SSM is therefore the first instance of a MML graphical language. It is well adapted
to describe the coupling between sub-models having well separated scales. But it soon will
be unreadable when the scales of several models overlap. For this reason we proposed in the
next section additionnal diagrams of a multiscale application which augment the SSM view by
providing extra information.

3. Coupling Diagram

MML can be represented as diagrams. Those diagrams help to design and describe a complex
coupling by showing which are the components that constitutes the model, the flow of informa-
tion between components, the space and time scale of components and exchanged data and the
execution timeline. Such representation has several usages: first it can be easily hand-drawn to
facilitate scientific and programming discussion, then it illustrates coupling specifications, finally
it provides a standard way of describing a model for publication.

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 5

This visual aspect of MML is similar to Unified Modelling Language (UML) diagrams well
known in software engineering [9]. Indeed, MML diagrams complement UML models by pro-
viding higher level information related to scientific coupling of subsystems (notably scale infor-
mation and coupling approach). Both systems can then be used side by side. For example, the
components of an MML diagram can be specified further by providing UML class and activity
diagrams giving implementation detais.

All information shown in diagrams can be inferred from the XML representation (see below),
so given a particular MML XML file, diagrams can be automatically generated.

Our MML proposition includes two diagrams. The first is the scale separation map shown in
Fig. 2. The other one is the coupling diagram detailed below.

In the coupling (or dataflow) diagram components are represented by boxes of different
shapes. Their size and their position in the diagram do not carry any information. Their relative
position in the diagram must be chosen in order to increase readbility. The shape of components
are:

• Submodels are represented by rectangular boxes. The title should lay in the upper part
such as to leave the bottom part open for optional annotations. The center must stay empty
because, it may be used to attach coupling arrows.

• Filters are shown as rectangular boxes with rounded corners. When hand-drawn, oval
shapes can be substituted. Their orientation is not relevant.

• Mappers Mapper are represented by hexagonal boxes. Their orientation is not relevant.

In addition to components, the coupling diagram represents the dataflow by an edge (or
“arrow”) linking two components. The symbols at extremities and the point where they attach to
the components carry information about the coupling.

In principle each arrow represents should be labelled to describe the kind of data that is
exchanged (i.e. velocity, pressure, number of cells). However, to increase readability, several
arrows linking the same components at the same points with the same extremities can be showned
as one. In this case, the resulting arrow is labeled with a list of labels, joined by commas.

Arrow ends. The arrow extremity markers show the main loop operators involved in the infor-
mation exchange. The extremity attached to the sending submodel can have to markers:

• When the information is sent during the submodel computation (operator Oi) the arrow
extremity comes with a black circle.

• When the information is sent after computation (operator O f), the symbol is a black di-
ammond.

When the data originates from a filter or a mapper, the marker is ommited. This simplification
can also be made for submodels which do not follow the main loop described in Sec. 2.1 or for
preliminary drafts. The different markers are summarized in Fig. 3.

For the marker extremity which is attached to the sending submodel we have four possibili-
ties:

• When the information is used in the initial condition, the arrow finishes with a white
diammond.

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 6

Source markers Target markers

Undefined

Oi

Of

Undefined

Initialization

U

B

C

Figure 3: Coupling arrows marker palette.

SMC

DDBF

Mapper

geom
etry

ge
om

et
ry

concentra
tio

n

cellpositions

sh
e
a
r

st
re

ss

shear stress,concentration

Figure 4: Coupling diagram for the ISR model presented in Sec. 2.2. BF: blood flow; DD: Drug diffusion; SMC: smooth
muscle cells.

• When the information is used to update the domain (operator U), the arrow finishes with a
white half circle.

• When the information is used in collision operator (operator C), the arrow end is a white
circle.

• When the information is used to update boundaries (operator B), the arrow end is a white
triangle.

When the coupling recipient is a filter or a mapper the end marker is a simple arrow end.
Again, this “default” marker can also be used for submodels which do not follow the main loop
or for preliminary drafts.

Attachement points. The exact places in submodels where coupling arrows are attached inform
about the space and time scale of the exchanged data. As in scale maps, the x axis refers to
the time frequency and the y axis to the space frequency. In both directions we have three
possibilities:

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 7

• Time axis: data at the same time frequency than the connected submodel (to the left), data
at a frequency equals to the duration length of the connected model (to the right) and data
sent at an intermediate frequency (centered horizontaly).

• Space axis: data at the same space frequency than the connected submodel (to the bottom),
data at a frequency equals to the total size of the connected model (to the right) and data
sent at an intermediate frequency (centered vertically).

Since both scales can be addressed separately, we have a total of nine possible attachment
points.

For instance in Fig. 4 the shear stress data flows from the blood flow model to the mapper.
The source extremity is attached to the bottom-right corner to the BF submodel. It means that
the data is sent at a fine spatial scale but at a time resolution equaling the BF total duration (i.e.
the time needed to reach the flow steady-state).

The coupling diagram can be completed with additional features. Here we only mention
an indication for the domain relation (multi-domain or single domain). When two or several
models share the same physical domain (for instance one plant growth model and an animal
growth model occurring in the same patch of land), we can draw a dotted rectangle around the
submodels. For example, in the ISR coupling diagram (Fig. 4) the smooth muscle cell and the
drug diffusion submodels share the same domain (artery wall).

4. XML representation

In addition to the visual models presented above, MML includes an XML [10] representation
called xMML. Using this representation, users can generate text files describing formally coupled
multi-scale systems. xMML grammar is designed to allow easy interact with both human users
and software. Therefore, they can be written either with a plain text editor or a dedicated program
with GUI. For example, it is possible to write a graphical editor for the diagrams seen above
which can produce the corresponding xMML files.

Usage of such files includes the following cases:

• Generating automatically MML diagrams.

• Producing a specification skeleton for a given coupled model, in HTML, LATEX, etc.

• Generating coupling “glue-code” for middlewares using ad-hoc generators.

The XML format was chosen because for three main reasons. First XML is now very com-
mon and parsing libraries exists for almost every language used in scientifc computing (XML
parsing libraries are avalaible for Fortran too). Then format based on XML can be automatically
validated if a grammar file is defined (DTD, schemas, etc.). This simplify the writing of robust
parsers because most checks are done automatically before semantic analysis. Finally, the Ex-
tensible Stylesheet Language family (XSL) allows user to describe complex transformation from
XML to other formats.

The main drawback of XML is its verbosity which can make the file size bigger than expected
and can hinder human readability. However, this verbosity can be strongly reduced by limiting
hierarchical levels and using attributes instead of inner tags every time it is possible.

The feasability of coupling code generation was demonstrated by Armstrong et al. [11]. They
have realized a coupling framework called BFG2 (Bespoke Framework Generator 2) used in

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 8

<model id="suspensionFlow">
<description>
Flow with a suspension of particles. The conentration
of particles affect locally the flow viscosity and the
particles are advected by the flow.

</description>
<submodel id="flow">
<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />
<spacescale dt="1 ms" t="1 min" />
<ports>

<in id="concentration" operator="C" dt="1 ms" dx="1 mm" />
<out id="velocity" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>
</submodel>
<submodel id="advectionDiffusion">
<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />
<spacescale dt="10 ms" t="1 min" />
<ports>
<in id="velocity" operator="C" dt="10 ms" dx="1 mm" />
<out id="concentration" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>
</submodel>
<coupling from="flow.velocity" to="advectionDiffusion.velocity" />
<coupling from="advectionDiffusion.concentration" to="flow.concentration">
<filter kind="timeInterpolation" />

</coupling>b
</model>

Figure 5: xMML file example.

earth system modelling. BFG2 uses XML metadata to produce coupling code for submodels
written in Fortran. Although some ideas are similar, xMML contains are higher level description
with emphasis on multiscale coupling. Note that small coupling details can be added in xMML
documents inside extra section to allow code generation for a given framework.

Here, due to lack of space, we do not present the full proposed grammar specifications of
xMML. Instead we present in Fig. 5 a typical example, which we expect to be self-explanatory.
This example illustrates a multiscale problem describing the advection-diffusion of suspensions
due to a fluid flow. In turn, the suspensions locally modify the fluid viscosity according to a
given phenomenological law. The full model is composed of two sub-models which are not
further specified here.

5. Conclusion

The Multiscale Modeling Language we have presented here aims at giving scientists with
different backgroud and geographical locations a better way to co-develop a complex multiscale

J.-L. Falcone / Procedia Computer Science 00 (2010) 1–9 9

application with many coupled sub-models. The current version of MML is a proposition, open
to discussion in the community and which can be easily further specified or modified if needed.

This work is supported by the European Commission (COAST project EU-FP6-IST-FET
Contract 033664)

[1] D. Evans, P.-V. Lawford, J. Gunn, D. Walker, D.-R. Hose, R. Smallwood, B. Chopard, M. Krafczyk, J. Bernsdorf,
A. Hoekstra, The application of multi-scale modelling to the process of development and prevention of stenosis in
a stented coronary artery, Phil. Trans. Roy. Soc.In press.

[2] A. Hoekstra, E. Lorenz, J.-L. Falcone, B. Chopard, Towards a complex automata formalism for multuscale model-
ing, Int. J. Multiscale Computational Engineering 5 (6) (2008) 491–502.

[3] A. Hoekstra, F. J.-L, A. Caiazzo, B. Chopard, Multi-scale modeling with cellular automata: The complex automata
approach, in: H. U. et al. (Ed.), ACRI 2008, Vol. LNCS 5191, Springer-Verlag Berlin Heidelberg 2008, 2008, pp.
192–199.

[4] A. G. Hoekstra, A. Caiazzo, E. Lorenz, J.-L. Falcone, B. Chopard, Complex automata: multi-scale modeling with
coupled cellular automata, in: A. Hoekstra, J. Kroc, P. Sloot (Eds.), Modeling complex systems with cellular
automata, Vol. chapter 3, Springer Verlag, 2010.

[5] S. Succi, The Lattice Boltzmann Equation, For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[6] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, 1998.
[7] J. Hegewald, M. Krafczyk, J. Tölke, A. Hoekstra, B. Chopard, An agent-based coupling platform for complex

automata, in: M. B. et al. (Ed.), ICCS 2008, Vol. LNCS 5102, Springer-Verlag Berlin Heidelberg 2008, 2008, pp.
291–300.

[8] http://developer.berlios.de/projects/muscle/.
[9] Object Management Group, UML 2.0, http://www.omg.org/spec/UML/2.0/ (2005).

[10] World Wide Web Consortium, Extensible markup language 1.0, http://www.w3.org/TR/xml/ (2008).
[11] C. W. Armstrong, R. W. Ford, G. D. Riley, Coupling integrated earth system model components with bfg2, Concurr.

Comput. : Pract. Exper. 21 (6) (2009) 767–791. doi:http://dx.doi.org/10.1002/cpe.v21:6.

